Skew bracoids and the Yang-Baxter equation

Paul Truman

Keele University, UK
Hopf algebras and Galois module theory
Omaha, May 2024

Joint work with

Ilaria Colazzo (Exeter / Leeds)
 Alan Koch (Agnes Scott College)
 Isabel Martin-Lyons (Keele)

Overview

Skew bracoids are known to correspond with Hopf-Galois structures on separable, but potentially non-normal, field extensions.

Aim

Show that bracoids can be used to produce and study right nondegenerate solutions of the set-theoretic Yang-Baxter equation.

- Solutions of the set theoretic YBE from skew braces.
- Skew bracoids, and a timeline of their connection with the YBE.
- Skew bracoids containing a skew brace.
- Connections with other algebraic objects.

Set theoretic solutions of the YBE

- A set theoretic solution of the YBE on a (nonempty) set G is a map $r: G \times G \rightarrow G \times G$ such that

$$
(r \times 1)(1 \times r)(r \times 1)=(1 \times r)(r \times 1)(1 \times r)
$$

- Henceforth: a solution on G.
- Write $r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)$.
- A solution is called
- bijective if r is a bijection;
- left nondegenerate if each λ_{x} is bijective;
- right nondegenerate if each ρ_{y} is bijective;
- nondegenerate if it is both left and right nondegenerate.

Solutions from groups: Lu-Yan-Zhu pairs

Proposition (Lu, Yan, Zhu, 2000)

Let G be a group. Suppose that we have functions $\lambda, \rho: G \rightarrow \operatorname{Map}(G)$ such that the following hold for all $x, y \in G$:

- $\lambda_{x y}=\lambda_{x} \lambda_{y}$;
- $\rho_{x y}=\rho_{y} \rho_{x}$;
- $\lambda_{x}(y) \rho_{y}(x)=x y$.

Then

$$
r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)
$$

is a solution on G.

Skew braces

Definition (Guanieri and Vendramin, 2017)

A skew brace is a triple (G, \star, \cdot) where (G, \cdot) and (G, \star) are groups and

$$
x \cdot(y \star z)=(x \cdot y) \star x^{-\star} \star(x \cdot z) \text { for all } x, y, z \in G .
$$

- If (G, \star, \cdot) is a skew brace then there is a homomorphism $\gamma:(G, \cdot) \rightarrow \operatorname{Aut}(G, \star)$ given by

$$
\gamma_{x}(y)=x^{-\star} \star(x \cdot y)
$$

called the γ-function of the skew brace.

Solutions from skew braces

Proposition

Let (G, \star, \cdot) be a skew brace. For $x, y \in G$ define

$$
\lambda_{x}(y)=\gamma_{x}(y) \text { and } \rho_{y}(x)=\lambda_{x}(y)^{-1} x y
$$

Then λ, ρ form a Lu-Yan-Zhu pair on G. The resulting solution $r(x, y)$ is bijective and nondegenerate.

- Each λ_{x} is bijective, and $\lambda_{x y}=\lambda_{x} \lambda_{y}$, by properties of the γ-function.
- Definition of ρ ensures that $\lambda_{x}(y) \rho_{y}(x)=x y$.
- "All" that remains in to prove that $\rho_{x y}=\rho_{y} \rho_{x}$; bijectivity of each ρ_{y} follows quickly.
- The inverse solution can be obtained from the opposite skew brace.

Skew bracoids

Definition (Martin-Lyons and T, 2024)

A (left) skew bracoid is a 5-tuple $(G, \cdot, N, \star, \odot)$ where (G, \cdot) and (N, \star) are groups and \odot is a transitive action of (G, \cdot) on N such that

$$
x \odot(\eta \star \mu)=(x \odot \eta) \star\left(x \odot e_{N}\right)^{-1} \star(x \odot \mu)
$$

for all $x \in G$ and $\eta, \mu \in N$.

- For brevity: (left) bracoids.
- Where possible, write (G, N, \odot), or even (G, N).
- Where possible, write $x \cdot y=x y$ and $\eta \star \mu=\eta \mu$.
- Every skew brace is a bracoid, with \odot and • coinciding.
- If $\operatorname{Stab}_{G}\left(e_{N}\right)=\left\{e_{G}\right\}$ then (G, N) is essentially a skew brace.

A large family of examples

Example

- Let (G, \star, \cdot) be a skew brace and let J be a strong left ideal.
- J is a normal subgroup of (G, \star), so $(G / J, \star)$ is a group.
- J is a subgroup of (G, \cdot), and the cosets of J with respect to \cdot and \star coincide.
- (G, \cdot) acts by left translation on the coset space G / J. Write \odot for this action.
- Then $(G, \cdot, G / J, \star, \odot)$ is a bracoid.

γ-functions of bracoids

- If (G, N, \odot) is a bracoid then there is a homomorphism
$\gamma: G \rightarrow \operatorname{Aut}(N)$ given by

$$
\gamma_{x}(\eta)=\left(x \odot e_{N}\right)^{-1}(x \odot \eta),
$$

called the γ-function of the bracoid.

- In a solution arising from a skew brace we set $\lambda_{x}(y)=\gamma_{x}(y)$. This doesn't generalize smoothly to bracoids: the subscript and argument of γ belong to different sets!
- We need some way of "pulling" everything back into G or "pushing" everything onto N.

A short history of bracoids and the YBE

- April 2023: Colazzo, Martin-Lyons, T.
- Let (G, \star, \cdot) be a skew brace, let J be a strong left ideal, and consider the bracoid ($G, \cdot, G / J, \star, \odot$).
- Suppose that there exists $H \subseteq G$ that is a complement for J in both (G, \star) and (G, \cdot).
- Define $\lambda_{x}(y)=\gamma_{x}(y J) \cap H$ and $\rho_{y}(x)=\lambda_{x}(y)^{-1} x y$.
- Then λ, ρ form a Lu-Yan-Zhu pair on G, giving a right-nondegenerate solution.
- August 2023: Koch, T.
- Let $G=(G, \cdot)$ be a group, H a subgroup of G, and consider a bracoid of the form ($G, \cdot, H, \cdot, \odot)$.
- H acts on itself via \odot. Assume that $h \odot e=h$ for all $h \in H$.
- Define $\lambda_{x}(y)=\gamma_{x}(y \odot e)$ and $\rho_{y}(x)=\lambda_{x}(y)^{-1} x y$.
- Then λ, ρ form a Lu-Yan-Zhu pair on G, giving a right-nondegenerate solution.

The common factor

Let (G, N) be a bracoid and let $S=\operatorname{Stab}_{G}\left(e_{N}\right)$.

Suppose that S has a complement H in G, so that G has an exact factorization $G=H S$. Then:

- (H, N) is a bracoid;
- $\operatorname{Stab}_{H}\left(e_{N}\right)=\left\{e_{G}\right\}$.

Hence (H, N) is essentially a skew brace.

We shall say that (G, N) contains a skew brace (H, N).

There is a bijection $b: N \rightarrow H$ defined by $b(\eta) \odot e_{N}=\eta$.

Solutions from bracoids containing a skew brace

Theorem

Suppose that (G, N) is a bracoid containing a skew brace (H, N). For $x, y \in G$ define

$$
\lambda_{x}(y)=b\left(\gamma_{x}\left(y \odot e_{N}\right)\right) \in H
$$

and

$$
\rho_{y}(x)=\lambda_{x}(y)^{-1} x y .
$$

Then λ and ρ form a Lu-Yan-Zhu pair on G, and

$$
r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)
$$

is a right nondegenerate solution on G.

Examples

Example

If (G, N) is essentially a skew brace then our construction yields the expected solution.

Example

If (G, \star, \cdot) is a skew brace and J is a strong left ideal then in the bracoid $(G, \cdot, G / J, \star, \odot)$ we have $\operatorname{Stab}_{G}(e J)=J$. If this has a complement in G then our construction yields the same solution as in the CMLT approach.

Example

If we have a bracoid of the form $(G, \cdot, H, \cdot, \odot)$ with $h \odot e=h$ for all $h \in H$ then H is a complement to $S=\operatorname{Stab}_{G}(e)$; our construction yields the same solution as the KT approach.

Examples

Example (Byott, 2024)

- Let N be an elementary abelian group of order 8 .
- Then $\operatorname{Hol}(N)$ contains a transitive subgroup $G \cong \mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)$.
- We may form the bracoid (G, N, \odot), where \odot is the natural action of G on N.
- We have $|G|=168$, so $|S|=21$, and so G has a exact factorization $G=H S$ with H a Sylow 2-subgroup of G.
- Hence our construction applies.

Do all skew bracoids contain a skew brace?

Example (Darlington, 2024)

- Let p and q be prime numbers with $p \equiv 1\left(\bmod q^{2}\right)$, and let N be a cyclic group of order $p q$.
- Then $\operatorname{Hol}(N)$ contains a minimally transitive subgroup G of order $p q^{2}$.
- We may form the bracoid (G, N, \odot), where \odot is the natural action of G on N.
- The subgroup $S=\operatorname{Stab}\left(e_{N}\right)$ does not have a complement in G.

Subsolutions

Recall: (G, N) is a bracoid containing a skew brace (H, N). We have defined

$$
\lambda_{x}(y)=b\left(\gamma_{x}\left(y \odot e_{N}\right)\right) \in H \text { and } \rho_{y}(x)=\lambda_{x}(y)^{-1} x y
$$

Proposition

The solution $r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)$ restricts to each of H and S.

Proof.

We have $\lambda_{x}(y) \in H$ by construction.
If in addition $x, y \in H$ then $\rho_{y}(x) \in H$.
If $x, y \in S$ then $\lambda_{x}(y)=b\left(\left(x \odot e_{N}\right)^{-1}\left(x y \odot e_{N}\right)\right)=e$ and $\rho_{y}(x)=x y$.

Recovering the whole solution

Theorem (Catino, Colazzo, Stefanelli, 2020)
Given sets X, Y, solutions r_{X}, r_{Y} on these sets, and maps $\alpha: Y \rightarrow \operatorname{Perm}(X)$ and $\beta: X \rightarrow \operatorname{Perm}(Y)$, all satisfying various compatibility conditions, we can construct a solution

$$
r_{X} \bowtie r_{Y}:(X \times Y) \times(X \times Y) \rightarrow(X \times Y) \times(X \times Y)
$$

called the matched product of the solutions r_{X} and $r_{Y}($ via α and β).

Proposition

(G, N) is a bracoid containing a skew brace (H, N) then the right nongenerate solution we obtain is isomorphic to the matched product of a solution on $X=H$ and a solution on $Y=S$.

Connections with other algebraic objects

Definition

A left semibrace is a triple $(G,+, \cdot)$ in which (G, \cdot) is a group, $(G,+)$ is a left cancellative semigroup, and we have

$$
x \cdot(y+z)=x \cdot y+x \cdot\left(x^{-1}+y\right) \text { for all } x, y, z \in G .
$$

We have $(G,+)=(G+e,+) \oplus(E,+)$, where $(G+e,+)$ is a group and E is the set of idempotents with respect to + .

Theorem (Catino, Colazzo, Stefanelli, 2017)

Let $(G,+, \cdot)$ be a left semibrace and for $x, y \in G$ define

$$
\mathcal{L}_{x}(y)=x\left(x^{-1}+y\right) \text { and } \mathcal{R}_{y}(x)=\mathcal{L}_{x}(y)^{-1} x y .
$$

Then \mathcal{L}, \mathcal{R} form a Lu-Yan-Zhu pair on G and $s(x, y)=\left(\mathcal{L}_{x}(y), \mathcal{R}_{y}(x)\right)$ is a left nondegenerate solution on G.

Finding the right sort of connection

Recall:

- left bracoids containing a skew brace yield right nondegenerate solutions
- left semibraces yield left nondegenerate solutions.

We could establish a connection of the following form:
left bracoid $\longleftrightarrow \leadsto$ right nondegenerate solution $\longleftrightarrow \rightsquigarrow$ right semibrace
In the extreme case, this would connect a left skew brace with a right skew brace: undesirable.

Finding the right sort of connection

Instead, we establish a connection of the following form:

In the extreme case both objects reduce to left skew braces.

If (G, N) is a bracoid containing a skew brace (H, N) then we may transport the structure of N to H, so without loss of generality we work with bracoids of the form ($G, \cdot, H, \star, \odot$).

The right sort of connection

Theorem

Let $G=(G, \cdot)$ be a group and let H, S be subgroups of G. There is a bijection between
(1) binary operations \star on H and transitive actions \odot of G on H such that $(G, \cdot, H, \star, \odot)$ is a left bracoid containing a skew brace ($H, \cdot,, \star$) and with $\operatorname{Stab}_{G}(e)=S$;
(2) binary operations + on G such that $(G,+, \cdot)$ is a left semibrace in which $G+e=H$ and $E=S$.

- Given a suitable bracoid $(G, \cdot, H, \star, \odot)$ let $\lambda_{x}(y)=\gamma_{x}(y \odot e)$ for $x, y \in G$ and define $x+y=y \lambda_{y^{-1}}(x)$.
- Given a suitable left semibrace ($G,+, \cdot$) define $h \star k=k+h$ for $h, k \in H$ and $x \odot h=x h+e$ for $x \in G$ and $h \in H$.

What about solutions?

Proposition

Suppose that the left bracoid ($G, \cdot, H, \star, \odot$) and the left semibrace $(G,+, \cdot)$ correspond as in the Theorem on the previous slide.
Let r be the right nondegenerate solution arising from $(G, \cdot, H, \star, \odot)$, and let s be the left nondegenerate solution arising from $(G,+, \cdot)$.
Then

$$
s(x, y)=\mu r \mu^{-1}(x, y)
$$

where $\mu(x, y)=\left(y^{-1}, x^{-1}\right)$.

Some natural questions...

- What happens if S has a normal complement in G ? (We can answer this one.)
- What is the effect of varying the complement H to S in G ? Different complements need not be isomorphic...
- What do methods for constructing semibraces tell us about bracoids, or vice versa?
- ...?

Thank you for your attention.

